U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings
  • Advanced Search
  • Journal List
  • J Gen Physiol
  • v.35(5); 1952 May 20

Logo of jgenphysiol

PERMEABILITY PROPERTIES OF ERYTHROCYTE GHOSTS

1. Erythrocyte ghosts from human blood were produced by gentle water hemolysis. The ghost-containing hemolysate (about 20 m N ) was added to media of different composition (KCl, NaCl, glucose, sucrose, etc.) and varying concentration ranging from 8 to 840 m N . The volume changes of the ghost cells were followed by a light absorption method. The potassium and sodium concentrations were also analyzed in some representative cases. 2. The ghosts shrank, or swelled, in two stages. An initial phase with a momentary expulsion, or uptake, of water leading to an osmotic equilibrium, was followed by a second phase in which a slow swelling or shrinking proceeded toward a final constant volume. 3. The ghosts were semipermeable in the sense that water always passed rapidly in either direction so as to maintain isotonicity with the external medium. The relation between ghost cell volumes ( V ) and the total concentration ( C e ) of the suspension medium can be expressed by a modified van't Hoff-Mariotte law: ( C e + a )( V – b ) = constant . Here a is a term correcting for an internal pressure and b is the non-solvent volume of the ghost cells. This means that the ghosts behave as perfect osmometers. 4. On the other hand appreciable concentration differences of the K and Na ions could be maintained across the intact ghost cell membranes for long periods. Whether this phenomenon is due simply to very low cation permeability or to active transport processes cannot be decided, although the first assumption appears more probable. 5. When the ghosts were treated with small concentrations of a lytic substance like Na oleate, the alkali ion transfer was greatly increased. This seems to be a simple exchange diffusion process with simultaneous, continued maintenance of osmotic equilibrium (= the second phase). A simplified theory is also given for the kinetics of the volume variations and ion exchange during the second phase ( cf . the Appendix). 6. Miscellaneous observations on the effects of pH, and of some other substances are discussed. Some shape transformations of the ghost cells are also described.

The Full Text of this article is available as a PDF (1.7M).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  • Brinkman R, V Szent-Györgyi A. The reversion of haemolysis. J Physiol. 1923 Dec 28; 58 (2-3):204–208. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Davson H, Ponder E. Studies on the permeability of erythrocytes: The permeability of "ghosts" to cations. Biochem J. 1938 Apr; 32 (4):756–762. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • DUNKER E, PASSOW H. Verteilung von Anionen and Kationen bei Fluoridvergiftung menschlicher Erythrocyten. Pflugers Arch. 1950; 252 (6):542–550. [ PubMed ] [ Google Scholar ]
  • FLYNN F, MAIZELS M. Cation control in human erythrocytes. J Physiol. 1949 Dec; 110 (3-4):301–318. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Guest GM, Wing M. OSMOMETRIC BEHAVIOR OF NORMAL HUMAN ERYTHROCYTES. J Clin Invest. 1942 May; 21 (3):257–262. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • HARRIS EJ, MAIZELS M. The permeability of human erythrocytes to sodium. J Physiol. 1951 May; 113 (4):506–524. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • PONDER E. The tonicity-volume relations for systems containing human red cells and the chlorides of monovalent cations. J Gen Physiol. 1949 Jan; 32 (3):391–398. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • PONDER E. Tonicity-volume relations in partially hemolyzed hypotonic systems. J Gen Physiol. 1950 Jan 20; 33 (3):177–193. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • PONDER E. Anomalous features of the loss of K from human red cells; results of extended observations. J Gen Physiol. 1951 Jan; 34 (3):359–372. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • RAKER JW, TAYLOR IM, WELLER JM, HASTINGS AB. Rate of potassium exchange of the human erythrocyte. J Gen Physiol. 1950 Jul 20; 33 (6):691–702. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • SHEPPARD CW, MARTIN WR, BEYL G. Cation exchange between cells and plasma of mammalian blood. II. Sodium and potassium exchange in the sheep, dog, cow, and man and the effect of varying the plasma potassium concentration. J Gen Physiol. 1951 Mar 20; 34 (4):411–429. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Teorell T. Studies on the "Diffusion Effect" upon Ionic Distribution. Some Theoretical Considerations. Proc Natl Acad Sci U S A. 1935 Mar; 21 (3):152–161. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • TEORELL T. Permeability. Annu Rev Physiol. 1949; 11 :545–564. [ PubMed ] [ Google Scholar ]
  • WIDDAS WF. Changing osmotic properties of foetal sheep erythrocytes and their comparison with those of maternal sheep erythrocytes. J Physiol. 1951 May; 113 (4):399–411. [ PMC free article ] [ PubMed ] [ Google Scholar ]

IMAGES

  1. Fluorescence micrographs show that dil-stained dodge erythrocyte ghosts

    erythrocyte ghost adalah

  2. Freeze-etched erythrocyte ghost after rotary replication. (a) The

    erythrocyte ghost adalah

  3. Live Blood Dark field Microscopy

    erythrocyte ghost adalah

  4. Erythrocytes with different hemoglobin contents

    erythrocyte ghost adalah

  5. Erythrocytes

    erythrocyte ghost adalah

  6. Ghost cells as a result of the Clostridium perfringens alpha toxin in

    erythrocyte ghost adalah

VIDEO

  1. ESR കൂടാൻ കാരണം

  2. Erythrocyte indexes

  3. Histology erythrocyte

  4. The ESR Test. Erythrocyte Sedimentation Rate

  5. Erythrocyte sedimentation rate; what it means. #erythrocytes #inflammation #infection

  6. Erythrocyte Sedimentation Rate (ESR)| MLM Business 4673#shorts#viral

COMMENTS

  1. PERMEABILITY PROPERTIES OF ERYTHROCYTE GHOSTS

    Erythrocyte ghosts from human blood were produced by gentle water hemolysis. The ghost-containing hemolysate (about 20 m) was added to media of different composition (KCl, NaCl, glucose, sucrose, etc.) and varying concentration ranging from 8 to 840 m. The volume changes of the ghost cells were followed by a light absorption method.