antec phantom 500w

Home » Antec Phantom 500

Antec Phantom 500

  • Last Updated - May 9, 2005
  • By Mike Chin
  • Be the first to comment on this article

Google News

Table of Contents

Antec adds a fan to their Phantom 350 fanless PSU, increases output to 500W, keeps the price the same, and calls it a “Hybrid Technology” power supply. Is this more marketing double talk or a genuine improvement? If a fanless PSU is silent, how is a fan-equipped version better? Which should you get, since they’re the same price? Our long review on this rather complicated product.

May 8, 2005 by Mike Chin and Devon Cooke

  • POSTSCRIPT added Oct. 22, 2005

The Antec Phantom 500 is a new, more powerful power supply based on the fanless Phantom 350 that we reviewed last September . Antec’s 350W fanless PSU recorded the highest peak efficiency we’ve ever seen, a whopping 88%. The most visible difference between the two models appears to be the addition of a fan in the 500 that turns on only at higher wattages to provide the extra capacity required to support 500W output. Antec describes this as a Hybrid Fan technology.

Is the Phantom 500 a fanless PSU with an auxiliary fan for cooling at high power or is it a fan-cooled fan whose fan stops when the load is low? It’s not a semantic question, and it is one of several questions we’ll be asking in this review:

  • Under what conditions does the Phantom 500 run fanlessly?
  • Under what conditions does the Phantom 500 fan come on?
  • Does the Phantom 500 operate fanlessly up to 350W? This is the maximum rated power of the fanless Phantom 350.
  • When the fan comes on, how can its behavior be characterized — in terms of speed vs. noise vs. cooling?
  • When the fan comes on, how does its noise / power curve compare to quiet conventional fan-cooled PSUs?

We start this review with the usual photo of the retail box.

antec phantom 500w

The Phantom ships in one of the largest boxes we’ve ever seen for a power supply. Part of the reason for this is the additional length that the cooling fan adds to the chassis, but the main reason is to accommodate the substantial packing materials that it is shipped in. Obviously, Antec is taking no chances when it comes to shipping damage. Because the primarily fanless design requires hard-mounting heavy heatsinks directly to the internal electrical components, the extra precautions against damage are probably a good idea.

antec phantom 500w

The manual for the Phantom is quite complete. It is in five languages and covers 21 pages, with far more detail than the typical four page pamphlet. It provides full electrical specifications. Much of the information is highly technical, and often not publicly available for many consumer PSU brands.

FEATURE HIGHLIGHTS

This information comes from the Antec web site product page and the manual.

SPECIFICATIONS

Comparing the specifications of the two Phantom models is quite instructive. Voltage rail capacities are almost identical. The +3.3V gets a 2A boost and one of the +12V lines gains 1A. The large increase in capacity comes from a higher combined wattage, not an increase on any individual line. This suggests that the circuit design of the two models is basically the same. The higher capacity of the 500W model is probably made possible by the addition of the fan, not any special electrical engineering.

PHYSICAL DETAILS

The sheer size and weight of the Phantom 500 is impressive. At 3.4 kg and 18.3cm depth, it is the biggest, heaviest PSU we’ve encountered. The casing is manufactured from extruded aluminum and acts as a heatsink to move heat out of the unit. There is also a plastic module on one end that contains the fan. This increases the total length of the unit, making it about an inch and a half longer than a standard power supply. The extra length may make it difficult or impossible to install the Phantom in some cases, although it should fit most cases without any problems.

The fan is mounted on the inner end of the power supply in a plastic module.

antec phantom 500w

Some extra hardware to provide non-standard support at the back of the unit is provided; this requires some mechanical expertise. We’d recommend some kind of additional back support. The standard four screws that normally secure a PSU to a case will hold this Phantom, but the cantilever force on the back panel will be high. The back panel of lighter weight steel or aluminum panel cases would certainly flex with this much weight hanging off it. We’d ship a PC with this PSU installed only with additional back support; the manual has a caution to this effect.

The aluminum casing of the Phantom 500 appears to be identical to the 350W version. Only the plastic module for the fan is different. We did not remove the casing entirely to compare the internal circuitry of the two models. Simply opening up the unit may affect the close coupling of internal components for heat conduction to the external casing.

antec phantom 500w

FAN DETAILS

antec phantom 500w

The fan can be set to turn on at one of three preset thermal thresholds. A small switch on the fan module allows the user to choose between “ 1 “, “ 2 “, or “ 3 “. It is necessary to refer to the manual to discover what these numbers mean.

According to the manual, the “ 1 ” setting sets the fan to turn on when an internal temperature reaches 40°C. We do not know where this internal temperature is measured. The “ 2 ” and “ 3 ” settings set the thermal threshold to 47.5°C and 55°C, respectively. The switch came set to “ 1 “; most silence-seekers will want to bump the setting up to “ 3 ” right away.

antec phantom 500w

Is this feature really necessary? Anybody who buys a Phantom will have low noise as their main goal, and if Antec feels that it can perform at the “ 3 ” setting, why should they include the more conservative settings? The manual has some instructions about this.

The obvious implication is that in a high thermal and power draw environment, it is safer to run the Phantom 500 at the most aggressive fan setting. But does this mean the PSU will not cool itself adequately when used at the “ 3 ” setting in a high power rig (that still draws less than 500W, of course)?

The cover of the plastic fan module can be removed to access the fan, although this procedure requires some care. The fan measures 80x15mm. It is thinner and blows less air than most other power supply fans. The interior of the Phantom is densely packed with heatsinks, which limits the amount of airflow that can be pushed through it. The restriction may require greater than usual air pressure from the fan to push the same amount of air. The shallow 15mm depth of this fan actually means it produces less pressure than standard 25mm depth fans.

antec phantom 500w

Keep in mind that the Phantom was originally designed for fanless use; in theory, the fan should not be required often in ordinary use. The low-airflow fan and the airflow restrictions many be less important here than for other power supplies. When the fan does turn on under heavy load, with its much larger heatsinks, the Phantom should be able to use the minimal airflow more efficiently than an ordinary power supply.

The manual also notes that “ your chassis must be well-ventilated… make sure the exhaust fans installed in your PC chassis can cool the whole system without the help of a power supply fan. “

CABLES AND CONNECTORS

The Phantom 500 has a total of seven cable sets:

  • 19″ sleeved cable for 24-pin ATX connector
  • 24″ cable with a standard 4-pin AUX12V power connector and an 8-pin 4x12V connector for EPS12V (dual CPU) – The latter feature is not in the Phantom 350.
  • 38″ cable with three 4-pin IDE drive connectors and one floppy drive power connector
  • 30″ cable with two 4-pin IDE drive connectors and one floppy drive power connector
  • 2 x 25″ cables with two SATA drive connectors each
  • 19″ 6-pin auxiliary power connector for PCI Express

antec phantom 500w

For a power supply of this wattage, the Phantom 500 has surprisingly few cables. This is a good thing: “surprisingly few” is still far more than most ordinary systems require, and fewer wires to impede case airflow. Even dual-processor servers should not be missing any connectors.

antec phantom 500w

On minor issue that we encountered was the way the wires were tangled as they leave the casing. The tangle of wires effectively shortens the total length of the connectors, especially if two cable sets need to be pulled in opposite directions. This is not an uncommon criticism of power supplies, but we expected a higher level of workmanship.

ON THE TEST BENCH

For a fuller understanding of ATX power supplies, please read our article Power Supply Fundamentals & Recommended Units . Those who seek source materials can find Intel’s various PSU design guides, closely followed by PSU manufacturers, at Form Factors .

For a complete rundown of testing equipment and procedures, please refer to the article SPCR’s Revised PSU Testing System . It is a close simulation of a moderate airflow mid-tower PC optimized for low noise.

In the test rig, the ambient temperature of the PSU varies proportionately with its output load, which is exactly the way it is in a real PC environment. But there is the added benefit of a precise high power load tester which allows incremental load testing all the way to full power for any non-industrial PC power supply. Both fan noise and voltage are measured at various standard loads. It is, in general, a very demanding test, as the operating ambient temperature of the PSU often reaches >40 ° C at full power. This is impossible to achieve with an open test bench setup.

Great effort has been made to devise as realistic an operating environment for the PSU as possible, but the thermal and noise results obtained here still cannot be considered absolute. There are far too many variables in PCs and far too many possible combinations of components for any single test environment to provide infallible results. And there is always the bugaboo of sample variance. These results are akin to a resume, a few detailed photographs, and some short sound bites of someone you’ve never met. You’ll probably get a reasonable overall representation of that person, but it is not quite the same as an extended meeting in person.

REAL SYSTEM POWER NEEDS: One very important point is that the while our testing loads the PSU to full output (even >600W!) in order to verify the manufacturer’s claims, real desktop PCs simply do not require anywhere near this level of power. The most pertinent range of DC output power is between about 65W and 250W, because it is the power range where most systems will be working most of the time. To illustrate this point, we recently conducted system tests to measure the maximum power draw that an actual system can draw under worst-case conditions. Our most powerful P4-3.2 Gaming rig drew ~180W DC from the power supply under full load — well within the capabilities of any modern power supply. Please follow the link provided above to see the details. It is true that elaborate systems with SLI could draw as much as another 150W, but the total still remains well under 400W in extrapolations of our real world measurements.

antec phantom 500w

Ambient conditions during testing were 21°C and 20 dBA, with input of 120 VAC / 60 Hz measured at the AC outlet. This is slightly warmer and louder than is typical in the lab. All testing was done with the Phantom 500 fan controller switch at “ 3 “, the least aggressive setting for fan cooling .

TEST RESULTS

Please note — you may need to refer back to the article, SPCR’s Revised PSU Testing System , to understand the following discussion fully.

1. VOLTAGE REGULATION was well within the ±5% claimed. Throughout the range of test power output levels, the range was as follows:

  • +12V: 11.9 ~ 12.1 V
  • +5V: 4.8 ~ 5.0 V
  • +3.3V: 3.1 ~ 3.3 V

2. AC-to-DC CONVERSION EFFICIENCY

As mentioned, the Phantom 350 peaked at a record 88% efficiency at 300W when we tested it last September. We were expecting the Phantom 500 to perform at least as well, and we were not disappointed. The Phantom 500 surpassed its smaller brother and peaked at 90% efficiency: A new record! Even better, this peak was reached at 250W output instead of 300W, meaning that the Phantom 500 will likely provide more benefit to real systems in real applications (at lower power) from its high-efficiency design than the original version.

One thing that we noticed was the wide variation in the efficiency of the 350W version, which ranged from 72% at 65W to 88% at 300W. The Phantom 500 is much better in this regard, starting with a high 78% at the 65W mark. It has a much flatter efficiency curve. At 90W output and higher, the Phantom always ran well above 80% efficiency, an impressive achievement unmatched by any other power supply we’ve tested so far. Above 200W output (where the internal heat production of a power supply is signficantly higher) efficiency never dropped below 88%. (Note that these figures apply to the more efficient non-PFC North American version.)

3. POWER FACTOR

Our review sample was the North American version, which does not feature PFC. Power factor ranged from 0.57-0.68, which is typical of non-PFC power supplies. The European and UK versions of Phantom both feature active PFC that is rated for >0.95 power factor. Antec states that these models are 4% less efficient than the North American version.

4. TEMPERATURE

The exhaust temp sensor was placed in one of the exhaust vent holes on the back panel of the PSU. The intake temp sensor was left where it has been for all the PSU reviews going back at least a year: One inch below and behind the PSU, inside the thermal test box.

Unlike all of the other power supplies we’ve tested, the difference between the intake and exhaust temperatures was greatest at low output levels. This result reflects the hybrid design of the Phantom 500. When the fan is not spinning, all the heat generated by the power conversion process is only removed by condution and convection, so the unit gets fairly warm. At higher output levels, the temperature climbs higher and the fan begins to spin, thus exhausting the heat more efficiently and keeping the unit cooler.

Even at its full 500W output, the Phantom stayed surprisingly cool. The exhaust temperature never rose above 60°C, a level that is occasionally broken even by units with much larger, more powerful fans. The fan ramps up quickly enough that past 35°C intake temperature (200~250W load in our test setup and conditions), the temperature difference between exhaust and intake stayed at ~10°C, which is similar to that seen in high efficiency conventional fan-cooled PSUs.

It is interesting to note that the Phantom 350 is specified for safe operation up to 65°C, wherever this temperature is actually measured. In contrast, the Phantom 500 is rated for an operating temperature up to 50°C. Why should this be so?

Here’s one hypothesis: The Phantom 500 is essentially a Phantom 350 with a fan. It is because the fan keeps temperature lower that the Phantom 500 can be allowed to run at higher output. In other words, if active airflow cooling was applied to the Phantom 350, and its overload protection settings changed, it could also safely produce 500W.

5. FAN, FAN CONTROLLER & ACOUSTICS (TEST RESULTS, continued)

At the “3” setting where all the tests were conducted, the fan is supposed to turn on when the internal temperature reaches 55°C. We didn’t have access to the internal thermistor; our standard temperature probes were used to determine the trigger temperature.

In our test setup, the fan turned on when the intake or internal case temperature reached ~33°C. The fan stayed running until the intake temp dropped to 32°C. The 33°C temperature was reached after running the power supply at 150W output for more than half an hour, in a 24°C ambient room.

This is surprising, given that the fanless Phantom 350 runs without a fan all the way to 350W output. It was questionable enough that we contacted Antec to find out whether this was normal fan controller behavior in this unit.

Antec’s answer was that the Phantom 500’s fan is set to turn on at the “ 3 ” setting when the load reaches ~200W. This calibration is imprecise, because it is an estimate based on temperature. In other words, the internal thermal sensor reaches 55° at ~200W load in a system with a level of airflow deemed suitable by Antec engineers. They could not tell me what “intake” temperature this correlates to.

The fan began spinning at a low level, putting out a quiet-but-not-silent 24 dBA/1m. The noise is a fairly pure tone that is higher in pitch than most quiet 80mm fans, but at 24 dBA/1m, it is easy to ignore. As the temperature rose (in responsed to increased output), the fan ramped up fairly quickly. By 35°C intake temperature, the 30 dBA/1m noise level, which we consider the upper limit of “quiet”, was breached.

It was difficult not to notice that slight variances in temperature and airflow caused the fan controller to go up or down almost immediately. All airflow through the test rig can be stopped by turning off the fans. This reduces the flow of hot air from the loaded resistors in the PSU tester, causing a temporary reduction in the air temperature at the PSU intake. It caused the fan controller to audibly ramp the fan speed down within a second or two. Turning the test system fans back on immediately caused the PSU fan to ramp up again.

This observed behavior suggests that the fan controller has two states:

  • Below the trigger temperature, the voltage fed to the fan does not vary with temperature; it is fixed at 0V.
  • Above the trigger temperature, the relationship between fan speed and temperature is linear, and there is very little hystersis. In other words, every change in temperature results in an immediate proportional change in fan voltage (along with its speed and noise).

The basic shape of the curve in the above right chart should be familiar to regular SPCR visitors. It is the same one used in many PSU fan controllers. The starting / default fan voltage is usually somewhere between 4 and 5 volts, and the fan spins at a slow, quiet rate. At the trigger temperature, the fan begins to ramp up, often in a linear fashion. The best fan controllers have a some of hysteresis in the latter portion of the fan controller’s curve so that small changes in temperature do not lead to instant and rapid changes in fan speed and noise.

The chart on the left illustrates how the Phantom 500 fan controller works. The main difference here is that instead of 4~5V as the starting voltage for the fan, the Phantom 500 starts at 0V. Hysteresis is non-existent in the linear (sloped) portion of the fan controller’s operation.

The irregular nature of the fan controller was most pronounced at lower fan speeds; on our test system this was at about 200W output. In fact, the effect made it impossible to make reliable measurements of the noise level. Even more than usual, the above SPL measurements should be considered approximations of what we heard.

Here is a recording of the noise we refer to. It was difficult to capture because of higher than usual ambient noise in the neighborhood, and because the thermals in the test box had to be varied a bit to cause the fan variances. You may have trouble hearing it. The SPL was not monitored during this recording, as we were also busy quietly turning the test box fan on/off. Our guesstimate is 24~26 dBA/1m. The load was 200W.

MP3: Antec Phantom 500 – variable fan noise at 200W load, with small changes in operating ambient temperature.

Finally, there was a small amount of buzzing that could be heard at times from under two feet disatance, directly behind the back panel. This buzzing did not appear to be directly related to load.

ACOUSTICS VS. COMPETITORS

It would be instructive to compare the noise of the Phantom 500 against similar power competitors tested by SPCR in recent months. The ambient temp for every PSU test on this table was 21°C, except for the FSP Blue Storm, which was tested at 20°C.

Please note that although this data is accurate, it is within the context of SPCR test rig setup, which simulates a typical low-noise, low-airflow setup of the kind we most often espouse. Results will definitely vary based on case airflow, system components, applications and ambient temperatures. The audibility of the sound levels will also vary depending on your hearing sensitivity as well as ambient noise.

SYSTEM TEST

An informal test was run on a Phantom 500 in a system that was built by Mike at the time of testing. The following components were used:

  • Silverstone Temjin TJ06 Case, treated with Acoustipack damping material; HDD cage removed, 80mm fan exhuast hole added to back panel below PSU.
  • DFI LANPARTY UT nF4 Ultra-D motherboard; chipset fan kept to just below obvious audibility with the case closed, using BIOS fan controller in the motherboard.
  • AMD Athlon 64-3500+ , Winchester core.
  • Arctic Cooling Freezer 64 CPU heatsink, fan at ~1000 RPM using BIOS fan controller in the motherboard.
  • AOpen Aeolus 6600GT-DV128 video card. Stock fan run at 7~8V with Zalman fanmate voltage controller.
  • 4 x 1GB Corsair PC3200 RAM.
  • 2 x Western Digital Raptor 74G Hard Drives, suspended in NoVibesIII suspension devices.
  • BenQ DW1620 DVD±R/RW drive.
  • 2 x 120mm Nexus fan , undervolted to 6V.
  • Nexus 80mm fan , undervolted to 7V.
  • PCC&P Silencer 80 fan positioned directly below the PSU as an exhaust.

antec phantom 500w

Altogether, this setup drew ~160W AC when running CPUBurn. This equates to about 135W DC output. The system was burned in for a day running Prime95 continuously. CPUBurn was also run on the machine for about two hours. The room ambient varied from 22°C to 25°C. During this time, the PSU fan never turned on, meaning that the Phantom 500 was effectively fanless. At no time during this load testing did the system exhibit any instability. The measured SPL during CPUBurn was measured at ~27 dBA at 1m from the front, top or sides. The acoustic character was predominantly the benign broadband wind noise of the smooth, slowly spinning fans. When the hard drives moved into seek, the SPL jumped 2~3 dBA, but in idle, the Raptor HDDs were amazingly quiet. The buzzing reported during the testing was occasionally present, but it could only be heard when directly behind the PSU and a foot way; practically speaking, it was a non-issue.

The system was not built with ultimate quiet as a target, but rather, high performance, stability and reliability at up to 30°C ambient room temperature — and very low noise. The original PSU choice was a Seasonic S12-430, but its main ATX cable was stretched a little too tight for comfort due to the positioning of the PSU so far from the motherboard. The Phantom 350 was a possible choice, but for higher reliability, the fan and the higher power capacity of the Phantom 500 seemed a better match for this system. After a couple hours of being turned on, especially when running CPUBurn, the top and back case panels near the PSU became somewhat warm to touch. The PSU back panel was a bit warmer, of course, but not at all uncomfortable to touch. Unfortunately, temperatures were not taken, but if I had to guess, I’d say the back of the PSU was not much higher than 40°C.

The configuration and mods for this case would have been the same with the S12. The additional 80mm fan under the PSU just seemed wise, given the hot running tendency of the 10K Raptor HDD positioned below it. (Even with the S12-430, airflow for the HDD was pretty modest because the 120mm fan in the S12 runs at such low speed.) Subjectively, from the user’s point of hearing with the PC on the floor by or under a desk, the extra 80mm fan does not add to the overall noise. The two biggest noise challenges of this system were two small fans: One on the video card, and especially the one on the motherboard northbridge chip. Allowing the latter to ramp up easily destroyed the silencing work on all the other components; its high pitched, loud whiny whooshing at full speed was difficult to tolerate for more than a minute or two. It’s only the fan controller in the BIOS that saved this DFI NF4 board from being summarily rejected.

CONCLUSIONS

The Phantom 500’s extremely high efficiency is noteworthy. We find ourselves crowning a Phantom as efficiency champion once again. There must have been tweaks and production improvements to the circuit design of the original Phantom 350 to improve the efficiency at lower output levels, and to maintain efficiency above 80% throughout most of the output range. It may be possible that current production Phantom 350 samples also exhibit improved efficiency.

Its $200 recommended retail price is the same as the Phantom 350. At time of writing, the Phantom 350 can be found for as low as $130 from discount online stores, so the 500 can probably be expected to be available for a similar price as availability expands. The pricing suggests that the 500 is positioned alongside the 350 as an alternative, not as a higher rank model.

If the Phantom 500 had been equipped with a smoother fan and its controller configured so that the fan would start at say ~300W and ramp up without the quick variations in speed that causes annoyance, then there would be no need for the Phantom 350 at all. As it is, the two represent a somewhat complex choice with overlaps in suitability; neither quite replaces the other.

It is important to remember that neither the 350 nor the 500 are intended to be used in a fanless system. The Phantom 500 manual notes, “ your chassis must be well-ventilated… make sure the exhaust fans installed in your PC chassis can cool the whole system without the help of a power supply fan. ” This advice is pertinent to every fanless ATX PSU on the market.

For the silent PC seeker, our general recommendation is to keep the overall system power as low as possible so that there is a minimal amouint of heat to content with. Our test system above is a good example of a powerful system that still does not even reach 150W DC maximum output. In this system, it would make no difference which of the two Phantoms was used, because the the 500’s fan would probably not turn on unless ambient temperature soared, perhaps to >30°C. Some would say the 500 is a better choice for this system because it will be just as quiet as the 350, yet protect itself in a thermal emergency. Others would say they’d prefer to know that there is no fan to ever turn on and keep the thermal management in their own hands. The bottom line is that if the temperature at the PSU “intake” can be kept below ~33°C all the time, the 500 will be just as silent as the fanless 350. The fan trigger point is affected by ambient temperature, and it can also be controlled by adjusting the case airflow, especially in the vicinity of the PSU.

There is a stronger case for the Phantom 500 for the inveterate, power-hungry gamer who seeks a quiet PC. There are lots of such folks floating at SPCR these days; yes, even gamers are starting to hear the call of the silence siren. These PC users still want to run a thermally extreme system — something like dual >75W VGA cards in a loaded high power system with a CPU that draws >100W. Or perhaps a dual-CPU system (since the Phantom 500 has an 8-pin EPS12V connector). Such a system could push the fanless 350 to its output limits and challenge its ability to keep itself cool. The Phantom 500’s built in fan would certainly keep it cooler, and it would provide the necessary power. At the same time, when the system is in idle, reduced power consumption would likely bring the temperatures in a well-designed system down to the point where the Phantom 500 fan would turn off.

In this kind of application, the Phantom 500 has to compete with more conventional but still very quiet fan-cooled PSUs, such as the Seasonic S12-430 (or the slightly less quiet S12-500). Even though its maximum power is lower than the Phantom 500, 430W is probably still enough power for all but the most extreme gaming PCs. The main advantage of the Phantom 500 is that at lower power levels, it is silent, while the more conventional quiet PSU runs very quietly. But then there is price to consider, and whether or not the rest of the system components are quiet enough to make that PSU noise difference audible.

The Phantom 500 is also a good choice for silencing newbies with deep pockets. The cooling fan is good insurance against burning the power supply in a system with inadequate airflow. The user-selectible options on the fan controller let the end-user determine their own level of thermal tolerance, although most newbies will probably just set it to “3” and forget about it.

Adding a fan to a “fanless” power supply seems counterintuitive, but it does provide a fail-safe option that is not present in the Phantom 350. In most circumstances, the Phantom 500 will function well as a fanless power supply so long as airflow through the case is well managed.

Much thanks to Antec Inc. for this Phantom 500 sample.

In this case, our original efficiency calculations were way off across the board. It’s not clear why they were so far off, as most other test results were reasonably close at lower power output points. The extreme high efficiency results we obtained originally have dropped mostly into the low 80s and high 70s — still very good results, and bettered only by the Fortron Zen among fanless PSUs.

Discuss this article in the SPCR Forums.

Silent PC Review is reader-supported. When you buy through links on our site, we may earn an affiliate commission. Learn More

Leave a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

antec phantom 500w

Silent PC Review has been providing expert advice and detailed reviews of PCs and peripherals since 2002. Our technical advice has been featured on publications such as: New York Times, O’Reilly, PCMag, Popular Mechanics, Forbes, etc. plus countless trade shows and industry articles. We’re dedicated to providing top-notch advice and reviews for choosing your next PC build.

Information

  • Privacy Policy
  • Earnings Disclaimer
  • N4G Unlocked
  • Tablet PC Comparison
  • Consumesense
  • Which Laptop
  • Top Ten Mattresses
  • Gaming Giveaways

antec phantom 500w

Stress Test: Power Supplies Under Full Load

Antec phantom 500: quiet with high efficiency.

  • Page 1: Profits Or Quality?
  • Page 2: Still An Eldorado? 600 Percent Profit Margin Possible
  • Page 3: Our Motivation - Why Are We Running PSUs Constantly Under Full Load?
  • Page 4: Test Methodology
  • Page 5: Stressing With Highly Accurate Electronic Loads
  • Page 6: Noise Level And Measurement Of Temperatures
  • Page 7: Data Collection And Live Upload
  • Page 8: AcBel ATX-550CA -AB8FM: Failure - But 10-Year Warranty
  • Page 9: Antec Phantom 500: Quiet With High Efficiency
  • Page 10: Antec True Power 2.0: Mediocre Efficiency
  • Page 11: Aopen Prima Power 700: Super Results - No SLI
  • Page 12: BeQuiet BQT B5-520W-S1.3: Loose Transistor Triggers Failure
  • Page 13: Cooler Master Real Power RS-550-ACLY: Shutdown At Full Load
  • Page 14: Enermax Coolergiant EG485AX-VHB(W): Flawed Former Champ
  • Page 15: Enermax Noisetaker EG701AX-VE(W): Perfect Connections And Quiet
  • Page 16: Epower Silent Engine Xscale 470: Loud At Full Load
  • Page 17: Fortron FSP300-60GNF: Soundless With High Efficiency
  • Page 18: HEC AcePower ACE580UB: Failure At High Load
  • Page 19: Hiper Type R580: Not Within Specifications

The Antec Phantom is without peer in terms of quietness while offering terrific efficiency. The ripple values were also ok the second time around.

The graphic above shows the power supply connections and their length in centimeters. The Antec Phantom has no SLI connection - the two floppy connectors are exemplary.

Packaging of the Antec Phantom 500

With the Phantom from Antec we’re dealing with a hybrid power supply unit that enables not only active but also passive operation. The extremely heavy unit weighs in just under 5 pounds (3.2 kilos) and is processed quite well. Antec recently started in one of our past tests with a similar power supply unit (Phantom 350), with the result that the power supply unit switched off under longer maximum load operation. With a loud bang a further specimen said farewell forever. The cause for the breakdown of the first device was found in its high temperature - we were able to get a reading of more than 158 °F (70 °C) on its case. Now, the manufacturer has responded by offering a power supply unit that is almost exactly the same in construction but uses hybrid technology. Thus the expectations for this test are high.

Size Comparison : Antec Phantom 350 (above) and Antec Phantom 500

Unassuming appearance : Antec Phantom 500

Antec identification plate

Switch for fan speeds

Test Results

The Phantom 500 is the second candidate from manufacturer Antec, the first having run through the test course at the beginning of the live stress test. Just like the True Power 2.0 model with 550 watts (actively cooled), the Phantom 500 also missed the target for the same reason. During the ripple measurement, a ripple of 80 mV occurs on the 3.3 volts lead. The ATX12V specification only allows a ripple of 50 mV as limit. That makes crashes possible during maximum load. In contrast to the previous model (Phantom 350) with 350 watts, we should emphasize on the positive side that at least the power supply unit doesn’t switch off. Antec has learned from its mistakes and has integrated a fan into the Phantom 500 that only switches in under high load. Under a minor load the device is silent, e.g. playing a DVD or using an Office application.

Important Update - Antec technicians from Taiwan and the USA visited the Munich THG laboratory for just this purpose. The reason for the 3-hour visit was the divergences we discovered in the ripple test, which were not within spec - although the power supplies did not fail. The technicians from Antec performed new ripple tests on their power supplies together with the THG laboratory engineers. It turned out that the tolerances and high-frequency vibrations with their PSU can lead to varying results in the ripple tests. However, we didn’t observe this phenomenon in any of the other candidates.

Because we determined that the ripple tests can remain entirely within spec in the present models and that the other values were flawless, the Antec devices still earned positive test grades.

Antec technicians and THG lab engineers discuss the technical details involved in measuring the power supplies.

From left to right : Daniel Schuhmann and Bert Toepelt of THG together with the technicians from Antec.

Current page: Antec Phantom 500: Quiet With High Efficiency

Stay on the Cutting Edge

Join the experts who read Tom's Hardware for the inside track on enthusiast PC tech news — and have for over 25 years. We'll send breaking news and in-depth reviews of CPUs, GPUs, AI, maker hardware and more straight to your inbox.

Some RTX 3080, RTX A6000 GPUs Are Prone to Vapor Chamber Cracks: Report

Insect Breaks RTX 4090 Founders Edition GPU

NY Bill Would Require Background Checks to Buy 3D Printers, Attempts to Target Ghost Guns

  • atis Where's the end of article? There are actual test results missing for 7 PSU's. Reply
  • View All 1 Comment

OC3D Logo

  • Cases & Cooling
  • CPU & Motherboard
  • GPU & Displays
  • Input Devices

antec phantom 500w

Latest Reviews:

MSI MEG Z790 Ace Max Review

MSI MEG Z790 Ace Max Review

PCSpecialist Cobalt Nova Review Frontpage

PCSpecialist Cobalt Nova 14th Gen System Review

ASUS ROG Maximus Z790 Dark Hero

ASUS ROG Maximus Z790 Dark Hero Review

ASUS ROG Strix Z790-E Gaming WiFi II Review

ASUS ROG Strix Z790-E Gaming WiFi II Review

antec phantom 500w

Intel 14th Gen Processors Review

antec phantom 500w

Gigabyte Z790 Aorus Master X – Preview

SATA

MSI MAG Z790 Tomahawk Max Preview

antec phantom 500w

ASUS ROG Maximus Z790 Formula Preview

antec phantom 500w

ASUS ROG Maximus Z790 Apex Encore Preview

Forza Motorsport PC Performance Review and Optimisation Guide

Forza Motorsport PC Performance Review and Optimisation Guide

be quiet! Pure Loop 2

be quiet! Pure Loop 2 AIO Review

antec phantom 500w

Enermax Liqmaxflo 360 AIO Review

antec phantom 500w

Assassin’s Creed Mirage PC Performance Review and Optimisation Guide

Samsung T9 2TB

Samsung T9 2TB Portable SSD Review

Cyberpunk 2077 Phantom Liberty PC Performance Review and Optimisation Guide

Cyberpunk 2077 Phantom Liberty PC Performance Review and Optimisation Guide

Enermax REVOLUTION D.F. X 1200W Power Supply Review

Enermax REVOLUTION D.F. X 1200W Power Supply Review

antec phantom 500w

Corsair Dominator Titanium Review

Amzing new all white AOrus Motherboard

Gigabyte Z790 Aorus Pro X – Preview

Cyberpunk 2077 DLSS 3.5 Ray Reconstruction

Great, but not perfect – Nvidia DLSS 3.5 Ray Reconstruction Review

antec phantom 500w

MSI MPG GUNGNIR 300R PC Case Review

antec phantom 500w

Flat Packed PC Case! – Cooler Master QUBE 500 Review

Cooler Master MasterLiquid 360 Atmos CPU Cooler Review

Cooler Master MasterLiquid 360 Atmos CPU Cooler Review

Matrix Platinum

ASUS ROG RTX 4090 Matrix Platinum Review

antec phantom 500w

ASUS ROG Harpe Ace Aim Lab Review

G.Skill Trident Z5 White DDR5

G.Skill Trident Z5 White DDR5

antec phantom 500w

No crappy Google banners here, only PC related advertising you may actually find interesting. Please disable Ad Blockers in order for us to keep producing the same level of quality, informational reviews and news. Worst case they actually look pretty and fill the empty gaps <3

IMAGES

  1. Antec Phantom 500W voeding

    antec phantom 500w

  2. Antec Phantom 500W Hybrid Fan PSU Review

    antec phantom 500w

  3. Review: Antec Phantom 500 power supply

    antec phantom 500w

  4. Antec Phantom 500W PSU

    antec phantom 500w

  5. Antec Phantom 500W Hybrid Fan PSU Review

    antec phantom 500w

  6. Review: Antec Phantom 500 power supply

    antec phantom 500w

VIDEO

  1. It ain't heavy, it's my bu++ 🤬| Silent Horror #silenthorrorstory #onlyinohio

  2. NZXT Phantom 410 White Mid-Tower Gaming Case / Gaming Station

  3. ⚡️350w vs 500w💪Mamba Phantom és Mamba Demon elektromos roller összehasonlítás!

  4. Antec DP503

  5. PHANTOM R1- Amazon scooter, 240lbs doing errands pt 1

  6. Antec Intros P10 Flux Case with a Swing Open Front Panel and 5 25 inch Bay

COMMENTS

  1. Antec Phantom 500

    May 8, 2005 by Mike Chin and Devon Cooke POSTSCRIPT added Oct. 22, 2005 The Antec Phantom 500 is a new, more powerful power supply based on the fanless Phantom 350 that we reviewed last September. Antec’s 350W fanless PSU recorded the highest peak efficiency we’ve ever seen, a whopping 88%.

  2. Antec Phantom 500 12V 2.0 500W ATX Power Supply

    Antec Phantom 500 12V 2.0 500W ATX Power Supply Visit the Antec Store 4.4 6 ratings Currently unavailable. We don't know when or if this item will be back in stock. See more About this item ATX12V version 2.01 compliant with 24-and-20-pin adapter connector with detachable 4-pin section for 20-pin for backward compatibility with older motherboards

  3. Antec Phantom 500: Quiet With High Efficiency

    The Phantom 500 is the second candidate from manufacturer Antec, the first having run through the test course at the beginning of the live stress test. Just like the True Power 2.0 model with 550 ...

  4. Amazon.com: Customer reviews: Antec Phantom 500 12V 2.0 500W

    Find helpful customer reviews and review ratings for Antec Phantom 500 12V 2.0 500W ATX Power Supply at Amazon.com. Read honest and unbiased product reviews from our users.

  5. Antec Phantom 500w Silent PSU

    The Phantom is very well packaged between 2 layers of moulded styrofoam, which should do a good job of protect the unit against any heavy-handed delivery drivers. Included in the package are the following items: - Antec Phantom 500w Manual - Mains cable - 4x ATX case screws - Antec Phantom 500w PSU